Publications

Last Updated: September 2023.
An up to date list of all publications can be found on my Google Scholar profile.

Filter: , , , , , , , , , , , , , ,

2024

Learning to (Learn at Test Time): RNNs with Expressive Hidden States

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Y. Dubois, Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, Carlos Guestrin

ArXiv

TLDR: A new language model layer that is more expressive than RNN but more efficient than attention.

,

Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators

Y. Dubois, B. Galambosi, P. Liang, T. Hashimoto

COLM 2024

TLDR: We decrease the bias of AlpacaEval for longer outputs using regression analysis.

,

HELM Instruct: A Multidimensional Instruction Following Evaluation Framework with Absolute Ratings

Y. Zhang, Y. Mai, J. Somerville Roberts, R. Bommasani, Y. Dubois, P. Liang

GitHub

TLDR: Multidimensional evaluation of instruction following LLM with absolute scores.

,

2023

Identifying the Risks of LM Agents with an LM-Emulated Sandbox

Y. Ruan*, H. Dong*, A. Wang, S. Pitis, Y. Zhou, J. Ba, Y. Dubois, C. J. Maddison, T. Hashimoto

ICLR 2024 Spotlight Presentation πŸŽ‰

TLDR: An LM-based emulation framework for identifying the risks of LM agents at scale.

, , ,

AlpacaEval: An Automatic Evaluator of Instruction-following Models

X. Li*, T. Zhang*, Y. Dubois*, R. Taori*, I. Gulrajani, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: A validated automatic evaluator for instruction-following language models. High-quality, cheap, and fast.

, , ,

AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback

Y. Dubois*, X. Li*, R. Taori*, T. Zhang*, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, T. Hashimoto

NeurIPS 2023 Spotlight Presentation πŸŽ‰

TLDR: AlpacaFarm replicates the RLHF process at a fraction of the time (<24h) and cost ($<200), enabling the research community to advance instruction following research.

, , ,

Stanford alpaca: An instruction-following llama model

R. Taori*, I. Gulrajani*, T. Zhang*, Y. Dubois*, X. Li*, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: We introduce Alpaca 7B, a instruction-following fine-tuned LLaMA model. On our preliminary evaluation, Alpaca behaves qualitatively similarly to OpenAI’s text-davinci-003, while being surprisingly small and easy/cheap to reproduce (<600$).

, ,

Evaluating Self-Supervised Learning via Risk Decomposition

Y. Dubois, T. Hashimoto, P. Liang

ICML 2023 Oral Presentation πŸŽ‰

TLDR: We derive a risk decomposition for self-supervised learning and use it to evaluate 169 pretrained models.

, , ,

2022

Is a Caption Worth a Thousand Images? A Controlled Study for Representation Learning

S. Santurkar, Y. Dubois, R. Taori, P. Liang, T. Hashimoto

ICLR 2022

TLDR: Our work performs a systematic investigation into whether additional language supervision (in CLIP) helps models learn more transferrable representations.

, , ,

Learning Instance-Specific Data Augmentations

N. Miao, E. Mathieu, Y. Dubois, T. Rainforth, Y. W. Teh, A. Foster, H. Kim

ICML 2023

TLDR: We introduce a method for automatically learning input-specific augmentations from data.

,

Improving Self-Supervised Learning by Characterizing Idealized Representations

Y. Dubois, T. Hashimoto, S. Ermon, P. Liang

NeurIPS 2022

TLDR: We characterize idealized self-supervised representations, which leads to actionable insights for improving SSL algorithms.

, , ,

Optimal Representations for Covariate Shifts

Y Ruan*, Y. Dubois*, C. J. Maddison

ICLR 2021

TLDR: We give a simple variational objective whose optima are exactly the set of representations that are robust under covariate shift.

, , , , ,

2021

Lossy Compression for Lossless Prediction

Y. Dubois, B. Bloem-Reddy, K. Ullrich, C. J. Maddison

NeurIPS 2021 Spotlight Presentation πŸŽ‰

TLDR: We formalize compression with respect to ML algorithms rather than human perception.

, , , , ,

2020

Learning Optimal Representations with the Decodable Information Bottleneck

Y. Dubois, D. Kiela, D. J. Schwab, R. Vedantam

NeurIPS 2020 Spotlight Presentation πŸŽ‰

TLDR: We characterize and approximate optimal representations for supervised learning.

, ,

the Neural Process Family

Y. Dubois*, J. Gordon*, A. Foong*

GitHub

TLDR: A simple and unifying explanation of the neural process family, which are a collection of models that meta-learn a distribution over predictors.

, , , ,

Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes

A. Y. K. Foong*, W. P. Bruinsma*, J. Gordon*, Y. Dubois, J. Requeima, R. E. Turner

NeurIPS 2020

TLDR: We propose a translation equivariant (latent) neural process.

, , , ,

Convolutional Conditional Neural Processes

J. Gordon*, W. P. Bruinsma*, A. Y. K. Foong, J. Requeima,Y. Dubois, R. E. Turner

ICLR 2020 Oral Presentation πŸŽ‰

TLDR: We propose a translation equivariant conditional neural process.

, , , ,

Location Attention for Extrapolation to Longer Sequences

Y. Dubois, Gautier Dagan, Dieuwke Hupkes, Elia Bruni

ACL 2020

TLDR: We propose an attention that improves extrapolation capacity of neural NLP models.

,