Publications by Tags

, , , , , , , , , , , , , ,

Selected Papers

Identifying the Risks of LM Agents with an LM-Emulated Sandbox

Y. Ruan*, H. Dong*, A. Wang, S. Pitis, Y. Zhou, J. Ba, Y. Dubois, C. J. Maddison, T. Hashimoto

ICLR 2024 Spotlight Presentation πŸŽ‰

TLDR: An LM-based emulation framework for identifying the risks of LM agents at scale.

, , ,

AlpacaEval: An Automatic Evaluator of Instruction-following Models

X. Li*, T. Zhang*, Y. Dubois*, R. Taori*, I. Gulrajani, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: A validated automatic evaluator for instruction-following language models. High-quality, cheap, and fast.

, , ,

AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback

Y. Dubois*, X. Li*, R. Taori*, T. Zhang*, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, T. Hashimoto

NeurIPS 2023 Spotlight Presentation πŸŽ‰

TLDR: AlpacaFarm replicates the RLHF process at a fraction of the time (<24h) and cost ($<200), enabling the research community to advance instruction following research.

, , ,

Stanford alpaca: An instruction-following llama model

R. Taori*, I. Gulrajani*, T. Zhang*, Y. Dubois*, X. Li*, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: We introduce Alpaca 7B, a instruction-following fine-tuned LLaMA model. On our preliminary evaluation, Alpaca behaves qualitatively similarly to OpenAI’s text-davinci-003, while being surprisingly small and easy/cheap to reproduce (<600$).

, ,

Evaluating Self-Supervised Learning via Risk Decomposition

Y. Dubois, T. Hashimoto, P. Liang

ICML 2023 Oral Presentation πŸŽ‰

TLDR: We derive a risk decomposition for self-supervised learning and use it to evaluate 169 pretrained models.

, , ,

Improving Self-Supervised Learning by Characterizing Idealized Representations

Y. Dubois, T. Hashimoto, S. Ermon, P. Liang

NeurIPS 2022

TLDR: We characterize idealized self-supervised representations, which leads to actionable insights for improving SSL algorithms.

, , ,

Lossy Compression for Lossless Prediction

Y. Dubois, B. Bloem-Reddy, K. Ullrich, C. J. Maddison

NeurIPS 2021 Spotlight Presentation πŸŽ‰

TLDR: We formalize compression with respect to ML algorithms rather than human perception.

, , , , ,

Compression

Lossy Compression for Lossless Prediction

Y. Dubois, B. Bloem-Reddy, K. Ullrich, C. J. Maddison

NeurIPS 2021 Spotlight Presentation πŸŽ‰

TLDR: We formalize compression with respect to ML algorithms rather than human perception.

, , , , ,

Equivariance

the Neural Process Family

Y. Dubois*, J. Gordon*, A. Foong*

GitHub

TLDR: A simple and unifying explanation of the neural process family, which are a collection of models that meta-learn a distribution over predictors.

, , , ,

Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes

A. Y. K. Foong*, W. P. Bruinsma*, J. Gordon*, Y. Dubois, J. Requeima, R. E. Turner

NeurIPS 2020

TLDR: We propose a translation equivariant (latent) neural process.

, , , ,

Convolutional Conditional Neural Processes

J. Gordon*, W. P. Bruinsma*, A. Y. K. Foong, J. Requeima,Y. Dubois, R. E. Turner

ICLR 2020 Oral Presentation πŸŽ‰

TLDR: We propose a translation equivariant conditional neural process.

, , , ,

Evaluation

Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators

Y. Dubois, B. Galambosi, P. Liang, T. Hashimoto

COLM 2024

TLDR: We decrease the bias of AlpacaEval for longer outputs using regression analysis.

,

HELM Instruct: A Multidimensional Instruction Following Evaluation Framework with Absolute Ratings

Y. Zhang, Y. Mai, J. Somerville Roberts, R. Bommasani, Y. Dubois, P. Liang

GitHub

TLDR: Multidimensional evaluation of instruction following LLM with absolute scores.

,

Identifying the Risks of LM Agents with an LM-Emulated Sandbox

Y. Ruan*, H. Dong*, A. Wang, S. Pitis, Y. Zhou, J. Ba, Y. Dubois, C. J. Maddison, T. Hashimoto

ICLR 2024 Spotlight Presentation πŸŽ‰

TLDR: An LM-based emulation framework for identifying the risks of LM agents at scale.

, , ,

AlpacaEval: An Automatic Evaluator of Instruction-following Models

X. Li*, T. Zhang*, Y. Dubois*, R. Taori*, I. Gulrajani, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: A validated automatic evaluator for instruction-following language models. High-quality, cheap, and fast.

, , ,

AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback

Y. Dubois*, X. Li*, R. Taori*, T. Zhang*, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, T. Hashimoto

NeurIPS 2023 Spotlight Presentation πŸŽ‰

TLDR: AlpacaFarm replicates the RLHF process at a fraction of the time (<24h) and cost ($<200), enabling the research community to advance instruction following research.

, , ,

Evaluating Self-Supervised Learning via Risk Decomposition

Y. Dubois, T. Hashimoto, P. Liang

ICML 2023 Oral Presentation πŸŽ‰

TLDR: We derive a risk decomposition for self-supervised learning and use it to evaluate 169 pretrained models.

, , ,

Information Theory

Optimal Representations for Covariate Shifts

Y Ruan*, Y. Dubois*, C. J. Maddison

ICLR 2021

TLDR: We give a simple variational objective whose optima are exactly the set of representations that are robust under covariate shift.

, , , , ,

Lossy Compression for Lossless Prediction

Y. Dubois, B. Bloem-Reddy, K. Ullrich, C. J. Maddison

NeurIPS 2021 Spotlight Presentation πŸŽ‰

TLDR: We formalize compression with respect to ML algorithms rather than human perception.

, , , , ,

Learning Optimal Representations with the Decodable Information Bottleneck

Y. Dubois, D. Kiela, D. J. Schwab, R. Vedantam

NeurIPS 2020 Spotlight Presentation πŸŽ‰

TLDR: We characterize and approximate optimal representations for supervised learning.

, ,

Invariance

Learning Instance-Specific Data Augmentations

N. Miao, E. Mathieu, Y. Dubois, T. Rainforth, Y. W. Teh, A. Foster, H. Kim

ICML 2023

TLDR: We introduce a method for automatically learning input-specific augmentations from data.

,

Improving Self-Supervised Learning by Characterizing Idealized Representations

Y. Dubois, T. Hashimoto, S. Ermon, P. Liang

NeurIPS 2022

TLDR: We characterize idealized self-supervised representations, which leads to actionable insights for improving SSL algorithms.

, , ,

Optimal Representations for Covariate Shifts

Y Ruan*, Y. Dubois*, C. J. Maddison

ICLR 2021

TLDR: We give a simple variational objective whose optima are exactly the set of representations that are robust under covariate shift.

, , , , ,

Lossy Compression for Lossless Prediction

Y. Dubois, B. Bloem-Reddy, K. Ullrich, C. J. Maddison

NeurIPS 2021 Spotlight Presentation πŸŽ‰

TLDR: We formalize compression with respect to ML algorithms rather than human perception.

, , , , ,

NLP

Learning to (Learn at Test Time): RNNs with Expressive Hidden States

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Y. Dubois, Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, Carlos Guestrin

ArXiv

TLDR: A new language model layer that is more expressive than RNN but more efficient than attention.

,

Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators

Y. Dubois, B. Galambosi, P. Liang, T. Hashimoto

COLM 2024

TLDR: We decrease the bias of AlpacaEval for longer outputs using regression analysis.

,

HELM Instruct: A Multidimensional Instruction Following Evaluation Framework with Absolute Ratings

Y. Zhang, Y. Mai, J. Somerville Roberts, R. Bommasani, Y. Dubois, P. Liang

GitHub

TLDR: Multidimensional evaluation of instruction following LLM with absolute scores.

,

Identifying the Risks of LM Agents with an LM-Emulated Sandbox

Y. Ruan*, H. Dong*, A. Wang, S. Pitis, Y. Zhou, J. Ba, Y. Dubois, C. J. Maddison, T. Hashimoto

ICLR 2024 Spotlight Presentation πŸŽ‰

TLDR: An LM-based emulation framework for identifying the risks of LM agents at scale.

, , ,

AlpacaEval: An Automatic Evaluator of Instruction-following Models

X. Li*, T. Zhang*, Y. Dubois*, R. Taori*, I. Gulrajani, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: A validated automatic evaluator for instruction-following language models. High-quality, cheap, and fast.

, , ,

AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback

Y. Dubois*, X. Li*, R. Taori*, T. Zhang*, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, T. Hashimoto

NeurIPS 2023 Spotlight Presentation πŸŽ‰

TLDR: AlpacaFarm replicates the RLHF process at a fraction of the time (<24h) and cost ($<200), enabling the research community to advance instruction following research.

, , ,

Stanford alpaca: An instruction-following llama model

R. Taori*, I. Gulrajani*, T. Zhang*, Y. Dubois*, X. Li*, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: We introduce Alpaca 7B, a instruction-following fine-tuned LLaMA model. On our preliminary evaluation, Alpaca behaves qualitatively similarly to OpenAI’s text-davinci-003, while being surprisingly small and easy/cheap to reproduce (<600$).

, ,

Is a Caption Worth a Thousand Images? A Controlled Study for Representation Learning

S. Santurkar, Y. Dubois, R. Taori, P. Liang, T. Hashimoto

ICLR 2022

TLDR: Our work performs a systematic investigation into whether additional language supervision (in CLIP) helps models learn more transferrable representations.

, , ,

Location Attention for Extrapolation to Longer Sequences

Y. Dubois, Gautier Dagan, Dieuwke Hupkes, Elia Bruni

ACL 2020

TLDR: We propose an attention that improves extrapolation capacity of neural NLP models.

,

Neural Processes

the Neural Process Family

Y. Dubois*, J. Gordon*, A. Foong*

GitHub

TLDR: A simple and unifying explanation of the neural process family, which are a collection of models that meta-learn a distribution over predictors.

, , , ,

Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes

A. Y. K. Foong*, W. P. Bruinsma*, J. Gordon*, Y. Dubois, J. Requeima, R. E. Turner

NeurIPS 2020

TLDR: We propose a translation equivariant (latent) neural process.

, , , ,

Convolutional Conditional Neural Processes

J. Gordon*, W. P. Bruinsma*, A. Y. K. Foong, J. Requeima,Y. Dubois, R. E. Turner

ICLR 2020 Oral Presentation πŸŽ‰

TLDR: We propose a translation equivariant conditional neural process.

, , , ,

RLHF

AlpacaEval: An Automatic Evaluator of Instruction-following Models

X. Li*, T. Zhang*, Y. Dubois*, R. Taori*, I. Gulrajani, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: A validated automatic evaluator for instruction-following language models. High-quality, cheap, and fast.

, , ,

AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback

Y. Dubois*, X. Li*, R. Taori*, T. Zhang*, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, T. Hashimoto

NeurIPS 2023 Spotlight Presentation πŸŽ‰

TLDR: AlpacaFarm replicates the RLHF process at a fraction of the time (<24h) and cost ($<200), enabling the research community to advance instruction following research.

, , ,

Stanford alpaca: An instruction-following llama model

R. Taori*, I. Gulrajani*, T. Zhang*, Y. Dubois*, X. Li*, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: We introduce Alpaca 7B, a instruction-following fine-tuned LLaMA model. On our preliminary evaluation, Alpaca behaves qualitatively similarly to OpenAI’s text-davinci-003, while being surprisingly small and easy/cheap to reproduce (<600$).

, ,

Representation Learning

Evaluating Self-Supervised Learning via Risk Decomposition

Y. Dubois, T. Hashimoto, P. Liang

ICML 2023 Oral Presentation πŸŽ‰

TLDR: We derive a risk decomposition for self-supervised learning and use it to evaluate 169 pretrained models.

, , ,

Is a Caption Worth a Thousand Images? A Controlled Study for Representation Learning

S. Santurkar, Y. Dubois, R. Taori, P. Liang, T. Hashimoto

ICLR 2022

TLDR: Our work performs a systematic investigation into whether additional language supervision (in CLIP) helps models learn more transferrable representations.

, , ,

Improving Self-Supervised Learning by Characterizing Idealized Representations

Y. Dubois, T. Hashimoto, S. Ermon, P. Liang

NeurIPS 2022

TLDR: We characterize idealized self-supervised representations, which leads to actionable insights for improving SSL algorithms.

, , ,

Optimal Representations for Covariate Shifts

Y Ruan*, Y. Dubois*, C. J. Maddison

ICLR 2021

TLDR: We give a simple variational objective whose optima are exactly the set of representations that are robust under covariate shift.

, , , , ,

Lossy Compression for Lossless Prediction

Y. Dubois, B. Bloem-Reddy, K. Ullrich, C. J. Maddison

NeurIPS 2021 Spotlight Presentation πŸŽ‰

TLDR: We formalize compression with respect to ML algorithms rather than human perception.

, , , , ,

Learning Optimal Representations with the Decodable Information Bottleneck

Y. Dubois, D. Kiela, D. J. Schwab, R. Vedantam

NeurIPS 2020 Spotlight Presentation πŸŽ‰

TLDR: We characterize and approximate optimal representations for supervised learning.

, ,

Robustness

Optimal Representations for Covariate Shifts

Y Ruan*, Y. Dubois*, C. J. Maddison

ICLR 2021

TLDR: We give a simple variational objective whose optima are exactly the set of representations that are robust under covariate shift.

, , , , ,

Location Attention for Extrapolation to Longer Sequences

Y. Dubois, Gautier Dagan, Dieuwke Hupkes, Elia Bruni

ACL 2020

TLDR: We propose an attention that improves extrapolation capacity of neural NLP models.

,

Safety

Identifying the Risks of LM Agents with an LM-Emulated Sandbox

Y. Ruan*, H. Dong*, A. Wang, S. Pitis, Y. Zhou, J. Ba, Y. Dubois, C. J. Maddison, T. Hashimoto

ICLR 2024 Spotlight Presentation πŸŽ‰

TLDR: An LM-based emulation framework for identifying the risks of LM agents at scale.

, , ,

Self-Supervised Learning

Learning to (Learn at Test Time): RNNs with Expressive Hidden States

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Y. Dubois, Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, Carlos Guestrin

ArXiv

TLDR: A new language model layer that is more expressive than RNN but more efficient than attention.

,

Stanford alpaca: An instruction-following llama model

R. Taori*, I. Gulrajani*, T. Zhang*, Y. Dubois*, X. Li*, C. Guestrin, P. Liang, T. Hashimoto

GitHub

TLDR: We introduce Alpaca 7B, a instruction-following fine-tuned LLaMA model. On our preliminary evaluation, Alpaca behaves qualitatively similarly to OpenAI’s text-davinci-003, while being surprisingly small and easy/cheap to reproduce (<600$).

, ,

Evaluating Self-Supervised Learning via Risk Decomposition

Y. Dubois, T. Hashimoto, P. Liang

ICML 2023 Oral Presentation πŸŽ‰

TLDR: We derive a risk decomposition for self-supervised learning and use it to evaluate 169 pretrained models.

, , ,

Is a Caption Worth a Thousand Images? A Controlled Study for Representation Learning

S. Santurkar, Y. Dubois, R. Taori, P. Liang, T. Hashimoto

ICLR 2022

TLDR: Our work performs a systematic investigation into whether additional language supervision (in CLIP) helps models learn more transferrable representations.

, , ,

Improving Self-Supervised Learning by Characterizing Idealized Representations

Y. Dubois, T. Hashimoto, S. Ermon, P. Liang

NeurIPS 2022

TLDR: We characterize idealized self-supervised representations, which leads to actionable insights for improving SSL algorithms.

, , ,

Optimal Representations for Covariate Shifts

Y Ruan*, Y. Dubois*, C. J. Maddison

ICLR 2021

TLDR: We give a simple variational objective whose optima are exactly the set of representations that are robust under covariate shift.

, , , , ,

Lossy Compression for Lossless Prediction

Y. Dubois, B. Bloem-Reddy, K. Ullrich, C. J. Maddison

NeurIPS 2021 Spotlight Presentation πŸŽ‰

TLDR: We formalize compression with respect to ML algorithms rather than human perception.

, , , , ,

Time Series

the Neural Process Family

Y. Dubois*, J. Gordon*, A. Foong*

GitHub

TLDR: A simple and unifying explanation of the neural process family, which are a collection of models that meta-learn a distribution over predictors.

, , , ,

Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes

A. Y. K. Foong*, W. P. Bruinsma*, J. Gordon*, Y. Dubois, J. Requeima, R. E. Turner

NeurIPS 2020

TLDR: We propose a translation equivariant (latent) neural process.

, , , ,

Convolutional Conditional Neural Processes

J. Gordon*, W. P. Bruinsma*, A. Y. K. Foong, J. Requeima,Y. Dubois, R. E. Turner

ICLR 2020 Oral Presentation πŸŽ‰

TLDR: We propose a translation equivariant conditional neural process.

, , , ,

Uncertainty

the Neural Process Family

Y. Dubois*, J. Gordon*, A. Foong*

GitHub

TLDR: A simple and unifying explanation of the neural process family, which are a collection of models that meta-learn a distribution over predictors.

, , , ,

Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes

A. Y. K. Foong*, W. P. Bruinsma*, J. Gordon*, Y. Dubois, J. Requeima, R. E. Turner

NeurIPS 2020

TLDR: We propose a translation equivariant (latent) neural process.

, , , ,

Convolutional Conditional Neural Processes

J. Gordon*, W. P. Bruinsma*, A. Y. K. Foong, J. Requeima,Y. Dubois, R. E. Turner

ICLR 2020 Oral Presentation πŸŽ‰

TLDR: We propose a translation equivariant conditional neural process.

, , , ,

Vision

Evaluating Self-Supervised Learning via Risk Decomposition

Y. Dubois, T. Hashimoto, P. Liang

ICML 2023 Oral Presentation πŸŽ‰

TLDR: We derive a risk decomposition for self-supervised learning and use it to evaluate 169 pretrained models.

, , ,

Is a Caption Worth a Thousand Images? A Controlled Study for Representation Learning

S. Santurkar, Y. Dubois, R. Taori, P. Liang, T. Hashimoto

ICLR 2022

TLDR: Our work performs a systematic investigation into whether additional language supervision (in CLIP) helps models learn more transferrable representations.

, , ,

Learning Instance-Specific Data Augmentations

N. Miao, E. Mathieu, Y. Dubois, T. Rainforth, Y. W. Teh, A. Foster, H. Kim

ICML 2023

TLDR: We introduce a method for automatically learning input-specific augmentations from data.

,

Improving Self-Supervised Learning by Characterizing Idealized Representations

Y. Dubois, T. Hashimoto, S. Ermon, P. Liang

NeurIPS 2022

TLDR: We characterize idealized self-supervised representations, which leads to actionable insights for improving SSL algorithms.

, , ,

Optimal Representations for Covariate Shifts

Y Ruan*, Y. Dubois*, C. J. Maddison

ICLR 2021

TLDR: We give a simple variational objective whose optima are exactly the set of representations that are robust under covariate shift.

, , , , ,

Lossy Compression for Lossless Prediction

Y. Dubois, B. Bloem-Reddy, K. Ullrich, C. J. Maddison

NeurIPS 2021 Spotlight Presentation πŸŽ‰

TLDR: We formalize compression with respect to ML algorithms rather than human perception.

, , , , ,

Learning Optimal Representations with the Decodable Information Bottleneck

Y. Dubois, D. Kiela, D. J. Schwab, R. Vedantam

NeurIPS 2020 Spotlight Presentation πŸŽ‰

TLDR: We characterize and approximate optimal representations for supervised learning.

, ,

the Neural Process Family

Y. Dubois*, J. Gordon*, A. Foong*

GitHub

TLDR: A simple and unifying explanation of the neural process family, which are a collection of models that meta-learn a distribution over predictors.

, , , ,

Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes

A. Y. K. Foong*, W. P. Bruinsma*, J. Gordon*, Y. Dubois, J. Requeima, R. E. Turner

NeurIPS 2020

TLDR: We propose a translation equivariant (latent) neural process.

, , , ,

Convolutional Conditional Neural Processes

J. Gordon*, W. P. Bruinsma*, A. Y. K. Foong, J. Requeima,Y. Dubois, R. E. Turner

ICLR 2020 Oral Presentation πŸŽ‰

TLDR: We propose a translation equivariant conditional neural process.

, , , ,